Measurement of the intrinsic strength of crystalline and polycrystalline graphene
نویسندگان
چکیده
The mechanical properties of materials depend strongly on crystal structure and defect configuration. Here we measure the strength of suspended single-crystal and bicrystal graphene membranes prepared by chemical vapour deposition. Membranes of interest are first characterized by transmission electron microscopy and subsequently tested using atomic force microscopy. Single-crystal membranes prepared by chemical vapour deposition show strengths comparable to previous results of single-crystal membranes prepared by mechanical exfoliation. Grain boundaries with large mismatch angles in polycrystalline specimens have higher strengths than their low angle counterparts. Remarkably, these large angle grain boundaries show strength comparable to that of single-crystal graphene. To investigate this enhanced strength, we employ aberration-corrected high-resolution transmission electron microscopy to explicitly map the atomic-scale strain fields in suspended graphene. The high strength is attributed to the presence of low atomic-scale strain in the carbon–carbon bonds at the boundary. DOI: 10.1038/ncomms3811
منابع مشابه
Abnormal linear elasticity in polycrystalline phosphorene.
Phosphorene, also known as monolayer black phosphorous, has been widely used in electronic devices due to its superior electrical properties. However, its relatively low Young's modulus, low fracture strength and susceptibility to structural failure has limited its application in nano devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is neces...
متن کاملIntrinsic strength and failure behaviors of graphene grain boundaries.
As one-dimension line defects, grain boundaries (GBs) can affect many intrinsic properties of graphene. In this paper, the mechanical properties of 20 representative graphene grain boundaries were studied using density functional theory and molecular dynamics. With different arrangements of the pentagonal and heptagonal rings, the grain boundary may remain flat or become inflected up to 72°. Fo...
متن کاملAtomistic modeling of mechanical properties of polycrystalline graphene.
We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreas...
متن کاملFracture Behavior and Thermal Conductivity of Polycrystalline Graphene
Title of Document: FRACTURE BEHAVIOR AND THERMAL CONDUCTIVITY OF POLYCRYSTALLINE GRAPHENE Andrew Fox, Doctor of Philosophy, 2014 Directed By: Associate Professor Teng Li, Department of Mechanical Engineering This dissertation investigates the effect of grain boundaries (GBs) in polycrystalline graphene on the tensile fracture behavior and thermal conductivity of the graphene sheets. Current tec...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کامل